In [3]:
hop_length = 512
win_length = 2048
max_win = 6
mu = 8
Gamma = 1
f_novfn = lambda x, hop_length, sr: get_superflux_novfn(x, sr, hop_length, win_length, max_win, mu, Gamma)
results = evaluate_tempos(f_novfn, get_fourier_tempo, hop_length)
ipd.HTML(results.to_html(escape=False, float_format='%.2f'))
8 / 20
Out[3]:
names Ground-Truth Tempos Estimated Tempos Close Enough
0 train1.wav [64.5, 129.5] 259.10 False
1 train2.wav [83.5, 167.5] 335.43 False
2 train3.wav [76.5, 153.0] 305.30 False
3 train4.wav [42.0, 126.0] 42.16 True
4 train5.wav [68.5, 205.5] 204.87 True
5 train6.wav [41.0, 82.0] 164.70 False
6 train7.wav [56.5, 113.5] 56.24 True
7 train8.wav [74.0, 148.0] 295.14 False
8 train9.wav [64.5, 129.0] 259.00 False
9 train10.wav [61.0, 122.5] 122.47 True
10 train11.wav [70.0, 140.0] 279.19 False
11 train12.wav [27.0, 54.0] 54.23 True
12 train13.wav [90.0, 180.0] 359.53 False
13 train14.wav [65.0, 130.0] 259.10 False
14 train15.wav [62.0, 186.0] 184.79 True
15 train16.wav [45.0, 90.5] 180.35 False
16 train17.wav [45.5, 91.5] 90.38 True
17 train18.wav [61.0, 121.5] 120.51 True
18 train19.wav [93.5, 188.0] 375.60 False
19 train20.wav [115.5, 220.5] 439.87 False
In [ ]: